Nab-Theme, professionelleres Navigationstheme
Ctrl + D Lesezeichen für diese Seite
Derzeitige Position:Abb. Anfang " AI-Werkzeugbibliothek

VideoRAG: Ein RAG-Rahmenwerk für das Verstehen ultralanger Videos mit Unterstützung für multimodales Retrieval und Wissensgraphenkonstruktion

2025-02-10 592

Allgemeine Einführung

VideoRAG ist ein generatives Framework mit Suchfunktion, das für die Verarbeitung und das Verständnis sehr langer kontextbezogener Videos entwickelt wurde. Das Tool kombiniert eine graphengesteuerte textuelle Wissensbasis mit hierarchischer multimodaler Kontextkodierung, um Hunderte von Stunden an Videoinhalten auf einer einzigen NVIDIA RTX 3090 GPU effizient zu verarbeiten. videoRAG erhält die Konsistenz der Videosemantik aufrecht und optimiert die Abfrageeffizienz durch den dynamischen Aufbau eines Wissensgraphen. Das von der Abteilung für Datenwissenschaften der Universität Hongkong entwickelte Projekt zielt darauf ab, den Nutzern ein leistungsfähiges Werkzeug zur Verarbeitung komplexer Videodaten an die Hand zu geben.

VideoRAG: Ein RAG-Rahmenwerk für das Verständnis ultralanger Videos mit Unterstützung für multimodales Retrieval und Wissensgraphenkonstruktion-1

 

Funktionsliste

  • Effizienter Umgang mit sehr langen kontextbezogenen VideosVerarbeiten Sie Hunderte von Stunden an Videoinhalten mit einer einzigen NVIDIA RTX 3090 GPU.
  • Strukturierter Video-WissensindexHunderte von Stunden an Videoinhalten in einem übersichtlichen Wissensdiagramm zusammenfassen.
  • multimodale SucheKombiniert textuelle Semantik und visuellen Inhalt, um die relevantesten Videos zu identifizieren und eine umfassende Antwort zu geben.
  • Neu erstellter LongerVideos-BenchmarkEnthält über 160 Videos mit insgesamt 134 Stunden an Vorträgen, Dokumentationen und Unterhaltung.
  • Dual-Channel-ArchitekturKombination einer graphengesteuerten textuellen Wissensbasis und einer hierarchischen multimodalen Kontextkodierung zur Aufrechterhaltung der semantischen Konsistenz zwischen Videos.

 

Hilfe verwenden

Einbauverfahren

  1. Erstellen und aktivieren Sie die conda-Umgebung:
   conda create --name videorag python=3.11
conda activate videorag
  1. Installieren Sie die erforderlichen Python-Pakete:
   pip install numpy==1.26.4 torch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2
pip install accelerate==0.30.1 bitsandbytes==0.43.1 moviepy==1.0.3
pip install git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d
pip install timm==0.6.7 ftfy regex einops fvcore eva-decord==0.6.1 iopath matplotlib types-regex cartopy
pip install ctranslate2==4.4.0 faster_whisper neo4j hnswlib xxhash nano-vectordb
pip install transformers==4.37.1 tiktoken openai tenacity
  1. Installieren Sie ImageBind:
   cd ImageBind
pip install .
  1. Laden Sie die erforderlichen Checkpoint-Dateien herunter:
   git clone https://huggingface.co/openbmb/MiniCPM-V-2_6-int4
git clone https://huggingface.co/Systran/faster-distil-whisper-large-v3
mkdir .checkpoints
cd .checkpoints
wget https://dl.fbaipublicfiles.com/imagebind/imagebind_huge.pth
cd ..

Verwendungsprozess

  1. Video WissensextraktionMehrere Videos werden in VideoRAG eingespeist und das System extrahiert und erstellt automatisch einen Wissensgraphen.
  2. Antwort auf eine AnfrageBenutzer können eine Anfrage eingeben, und VideoRAG liefert eine umfassende Antwort auf der Grundlage des erstellten Wissensgraphen und des multimodalen Suchmechanismus.
  3. Unterstützung mehrerer SprachenDerzeit wurde VideoRAG nur in einer englischen Umgebung getestet. Wenn Sie mit mehrsprachigen Videos arbeiten müssen, empfiehlt es sich, das WhisperModel in asr.py zu ändern.

Hauptfunktionen

  • Video-UploadHochladen von Videodateien in das System, das automatisch Wissen verarbeitet und extrahiert.
  • Anfrage EingabeGeben Sie eine Frage in das Abfragefeld ein, und das System wird Ihnen eine detaillierte Antwort auf der Grundlage des Wissensgraphen und des multimodalen Suchmechanismus geben.
  • Ergebnisse ShowcaseDas System zeigt relevante Videoclips und Textantworten an, auf die der Benutzer klicken kann, um Details anzuzeigen.

Empfohlen

Sie können keine AI-Tools finden? Versuchen Sie es hier!

Geben Sie einfach das Schlüsselwort Barrierefreiheit Bing-SucheDer Bereich KI-Tools auf dieser Website bietet eine schnelle und einfache Möglichkeit, alle KI-Tools auf dieser Website zu finden.

Scannen Sie den Code, um zu folgen

qrcode

Kontakt

zurück zum Anfang

de_DEDeutsch